PERMUTATIONS WITH REPETITION

- 1. How many distinct permutations are possible for each of the following: a) using five letters from the word "equation"? $8! \Rightarrow 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
 - b) using three letters from the word "graph"? $5! \Rightarrow 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
 - c) using all the letters in the word "graphic"? $7! \Rightarrow 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
 - d) using all the letters in the word "algebra"? $\frac{7!}{2!} \Rightarrow \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1}$

e) using all the letters in the word "coefficient"? $\frac{11!}{2!2!2!2!} \Rightarrow \frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1}$

f) using all the letters in the word "characteristics"? $\frac{15!}{3!2!2!2!2!2!} \Rightarrow \frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1}$

2. How many distinct permutations are possible for each of the following:

a) using all the flags (only different in color)if:

i) 3 red, 6 blue, 5 green? $\frac{14!}{3!6!5!} \Rightarrow \frac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$

ii) 6 black, 4 yellow, 3 orange, 2 blue?					
15!	$15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$				
<u>6!4!3!2!</u>	$6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1$				

iii) 4 green, 3 red and 6 black, and the top flag must red? $\frac{r \cdot 13!}{4!3!6!} \Rightarrow \frac{3 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$

iv) 2 blue, 4 green and 5 red, and the top and bottom flags must be green? $\frac{g \cdot 9! g}{2! 4! 5!} \Rightarrow \frac{4 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 3}{2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$

b) using all the beads (only different in color) and lining them in a row:

i) 2 red, 4 brown, 5 yellow and 6 pink $\frac{17!}{2!4!5!6!} \Rightarrow \frac{17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$

ii) 5 black, 4	orange, 3 green and 9 blue, and the first and last beads must be blue?
$b \cdot 19! b \Rightarrow$	$9 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 8$
5!4!3!9!	$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

3. How many distinct permutations may be formed for each of the following:a) a five digit number if:

i) the digits are 2, 5, 6, 8, and 9?
$$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

ii) the digits are 2, 4, 6, 8, and 8? $\frac{5!}{2!} \Rightarrow \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1}$
iii) the digits are 2, 2, 2, 5, and 6? $\frac{5!}{3!} \Rightarrow \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1}$
iv) the digits are 3, 3, 5, 5, and 5? $\frac{5!}{2!3!} \Rightarrow \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}$

v) the digits are 4, 4, 4, 4, and 5?
$$\frac{5!}{4!} \Rightarrow \frac{5 \cdot 4 \cdot 5 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1}$$

b) a five digit even number if:

i) the digits are 2, 4, 6, 8, and 7?
$$_\cdot_\cdot_\cdot_\cdot e \Rightarrow 4 \cdot 3 \cdot 2 \cdot 1 \cdot 4$$

ii) the digits are 4, 4, 5, 6, and 6?
$$\frac{-\cdot - \cdot - \cdot e}{2!2!} \Rightarrow \frac{4 \cdot 3 \cdot 2 \cdot 1 \cdot 4}{2 \cdot 1 \cdot 2 \cdot 1}$$

iii) the digits are 5, 5, 5, 2, and 2?
$$\frac{-\cdot - \cdot - \cdot e}{3!2!} \Rightarrow \frac{4 \cdot 3 \cdot 2 \cdot 1 \cdot 2}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1}$$

iv) the digits are 6, 6, 6, 6, and 9?
$$\frac{-\cdot - \cdot - \cdot e}{4!} \Rightarrow \frac{4 \cdot 3 \cdot 2 \cdot 1 \cdot 4}{4 \cdot 3 \cdot 2 \cdot 1}$$

c) a four digit odd number if:

i) the digits are 3, 5, 7, and 9?
$$_\cdot_\cdot_\cdot o \Rightarrow 3 \cdot 2 \cdot 1 \cdot 4$$

ii) the digits are 3, 3, 5, and
$$5 \xrightarrow{-\cdot - \cdot - \cdot 0}{2!2!} \Rightarrow \frac{3 \cdot 2 \cdot 1 \cdot 4}{2 \cdot 1 \cdot 2 \cdot 1}$$

iii) the digits are 7, 7, 7, and 2?
$$\frac{-\cdot - \cdot o}{3!} \Rightarrow \frac{3 \cdot 2 \cdot 1 \cdot 3}{3 \cdot 2 \cdot 1}$$

d) a five digit number divisible by five if:

i) the digits are 0, 3, 4, 7, and 9? $_\cdot_\cdot_\cdot_\cdot=0 \Rightarrow 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1$

ii) the digits are 0, 5, 3, 3, and 6?

_· _· _· _· 0	_· _· _· _· 5 _	$4 \cdot 3 \cdot 2 \cdot 1 \cdot 1$	$3 \cdot 3 \cdot 2 \cdot 1 \cdot 1$
2!	2!	$\rightarrow 2 \cdot 1$	$2 \cdot 1$
		5 1	2 2 1 2